Hiqmet Kamberaj

Foundations of General Physics

Mechanics

September 11, 2019

Jon & Lina
Preface

A course in Physics is part of any curriculum in science and engineering. The main objective of this course is to help students of engineering and/or other sciences in more advanced courses in these fields. A solid foundation in basic theories of physics is a must for accomplishing engineering or science degree. In this text, the emphasis will be on introducing the students to the fundamental concepts of physics and how different theories are developed from physical observations and phenomena. This textbook is geared more towards examples and problem solving techniques. The students will get a firsthand experience of how the theories in physics are applied to everyday problems in engineering and science. The learning outcome will be a broad knowledge and knowhow for problem solving techniques crucial in training engineers and scientists for a successful career in these fields.

Hiqmet Kamberaj

September 2019

Hiqmet Kamberaj
Acknowledgements

First, I would like to thank my students who have been patient with progress of the text and helped with their suggestions, corrections, and solutions to problems and examples, to finish it on time. Even more importantly, without their impatience, I would never have finished.
Contents

Part I Non-relativistic Classical Mechanics

1 A brief review of calculus for physics 3
 1.1 Coordinate systems 3
 1.2 Vector and scalar quantities 5
 1.3 Some properties of vectors 6
 1.3.1 Equality of two vectors 6
 1.3.2 Adding vectors 7
 1.3.3 Negative of a vector 9
 1.3.4 Subtracting Vectors 9
 1.3.5 Multiplying a vector by a scalar 10
 1.4 Components of a vector and unit vectors 10
 1.4.1 Unit vectors 12
 1.5 Vector multiplication 14
 1.5.1 Dot product of two vectors 14
 1.5.2 Cross product of two vectors 15
1.6 Some scientific notations 17
1.7 Some basic rules of algebra 18
 1.7.1 Power ... 19
 1.7.2 Factoring ... 20
 1.7.3 Quadratic Equations 21
 1.7.4 Linear equations 21
 1.7.5 Logarithms .. 22
1.8 Geometry .. 23
1.9 Trigonometry .. 24
1.10 Derivative .. 26
 1.10.1 Derivative of the product of two functions 27
 1.10.2 Derivative of the sum of two functions 28
 1.10.3 The chain rule of differential calculus 28
 1.10.4 The second derivative 28
1.11 Exercises .. 28

2 Physics and Measurement 37
2.1 Standards of length, mass, and time 37
 2.1.1 Length ... 38
 2.1.2 Mass .. 39
 2.1.3 Time .. 39
 2.1.4 British engineering system of units 41
2.2 Density .. 42
Contents

2.3 Dimensional analysis ... 44
2.4 Conversion of units ... 45
2.5 Significant figures ... 45
2.6 Exercises ... 47

3 One-dimensional motion .. 55
 3.1 Displacement ... 55
 3.2 The average velocity and speed 56
 3.2.1 Graphical interpretation of the velocity 57
 3.3 Instantaneous velocity and speed 59
 3.3.1 Graphical interpretation of the instantaneous velocity 61
 3.4 Average Acceleration 62
 3.4.1 Graphical interpretation of the average acceleration 63
 3.5 Instantaneous Acceleration 64
 3.5.1 Graphical Interpretation of Instantaneous Acceleration 64
 3.6 One dimensional motion with constant acceleration 65
 3.6.1 Kinematic equations of motion 66
 3.7 Freely falling objects 69
 3.8 Exercises .. 70

4 Two- and Three-dimensional Motion 105
 4.1 The displacement, velocity, and acceleration vectors 105
 4.2 Three dimensional motion with constant acceleration 109
 4.3 Projectile motion .. 112
4.4 Exercises .. 117

5 The laws of motion ... 157

5.1 The concept of force .. 157
5.2 Measuring the Strength of a Force 159
5.3 Newton’s first law and inertia frame 160
5.4 Newton’s second law of motion 162
5.5 Newton’s third law ... 163
5.6 Mass and weight ... 164
5.7 Elastic forces .. 167
5.8 Friction and dissipation forces 168
 5.8.1 Static friction .. 169
 5.8.2 Kinetic friction .. 170
 5.8.3 Resistive Force Proportional to Object Speed 171
5.9 Exercises .. 175

6 Circular motion and other applications of the Newton’s laws ... 193

6.1 Newton’s second law applied to uniform circular motion ... 193
6.2 Nonuniform circular motion 195
6.3 Motion in accelerated frames 196
6.4 Exercises .. 198

7 Work and kinetic energy ... 205

7.1 Work done by a constant force 205
Contents

7.2 The Work done by non-constant forces 207
7.3 Work Done by a Spring 209
7.4 Work-energy relation 211
7.5 Power ... 212
7.6 Exercises ... 213

8 Potential energy and conservation of energy 221

8.1 Potential energy .. 221
 8.1.1 Gravitational potential energy 222
 8.1.2 Elastic Potential Energy 223
8.2 Conservative and nonconservative forces 224
 8.2.1 Conservative forces 225
 8.2.2 Nonconservative Forces 226
8.3 Conservative forces and potential energy 227
8.4 Conservation of mechanical energy 229
8.5 Work done by an applied force 230
8.6 Exercises ... 230

9 Linear momentum and collisions 241

9.1 Linear momentum and its conservation 241
9.2 Conservation of Momentum for a Two-Particle System 242
9.3 Impulse and momentum 244
9.4 Collisions .. 246
 9.4.1 Elastic collisions 247
9.4.2 Inelastic collision .. 249
9.5 Center of mass ... 250
9.6 Motion of a system of particles 254
9.7 Exercises .. 256

10 Rotation of a rigid object 267
10.1 Angular displacement, velocity, and acceleration 267
10.2 Rotational kinematics 271
10.3 Angular and linear quantities 272
10.4 Rotation energy ... 275
10.5 Calculation of the moments of inertia 276
10.6 Torque .. 277
10.7 Relation between the torque and angular acceleration 279
10.8 Work, power and energy in rotational motion 281
10.9 Exercises .. 283

11 Rolling motion and angular momentum 293
11.1 Rolling motion of a rigid object 293
11.2 Angular momentum of a particle 295
11.3 Angular momentum of a system of particles 297
11.4 Angular momentum of a rigid body 298
11.5 Exercises .. 299

12 Static equilibrium and Elasticity 311
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Conditions for equilibrium</td>
<td>311</td>
</tr>
<tr>
<td>12.2</td>
<td>Elastic properties of solids</td>
<td>313</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Stress</td>
<td>313</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Strain</td>
<td>314</td>
</tr>
<tr>
<td>12.3</td>
<td>Elasticity and Plasticity</td>
<td>317</td>
</tr>
<tr>
<td>12.4</td>
<td>Exercises</td>
<td>317</td>
</tr>
<tr>
<td>13</td>
<td>Oscillatory motion</td>
<td>327</td>
</tr>
<tr>
<td>13.1</td>
<td>Simple harmonic motion</td>
<td>327</td>
</tr>
<tr>
<td>13.2</td>
<td>Energy of the simple harmonic oscillator</td>
<td>332</td>
</tr>
<tr>
<td>13.3</td>
<td>Simple pendulum</td>
<td>333</td>
</tr>
<tr>
<td>13.4</td>
<td>Physical pendulum</td>
<td>335</td>
</tr>
<tr>
<td>13.5</td>
<td>Exercises</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>Part II Relativistic Classical Mechanics</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Special Theory of Relativity</td>
<td>347</td>
</tr>
<tr>
<td>14.1</td>
<td>Galilean Transformation</td>
<td>347</td>
</tr>
<tr>
<td>14.2</td>
<td>The Speed of Light Under Galilean Velocity Transformations</td>
<td>350</td>
</tr>
<tr>
<td>14.3</td>
<td>The Speed of Light Under Michelson - Morley Experiment</td>
<td>351</td>
</tr>
<tr>
<td>14.4</td>
<td>Postulates of the Special Theory of Relativity</td>
<td>354</td>
</tr>
<tr>
<td>14.5</td>
<td>Exercises</td>
<td>362</td>
</tr>
<tr>
<td>15</td>
<td>Lorenz Transformations</td>
<td>371</td>
</tr>
<tr>
<td>15.1</td>
<td>Lorentz Transformations of Special Theory of Relativity</td>
<td>371</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>15.2 Four-dimensional Vectors and the Metric Tensor</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>15.3 Exercises</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>16 Relativistic Linear Momentum and Newton's Laws</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>16.1 Four-momentum</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>16.2 Forces in the Special Theory of Relativity</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>16.3 Conservation Law of Momentum</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>16.4 Exercises</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>17 Relativistic Work and Energy</td>
<td>401</td>
<td></td>
</tr>
<tr>
<td>17.1 Relativistic Work-Kinetic Energy Theorem</td>
<td>401</td>
<td></td>
</tr>
<tr>
<td>17.2 Exercises</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>18 Collisions</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>18.1 Head-to-head Collision</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>18.2 Elastic Scattering</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>18.3 Exercises</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>19 Relativistic Angular Momentum</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>19.1 Some Definitions</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>19.2 Relativistic Angular Momentum</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>19.3 System of Particles</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td>20 General Theory of Relativity</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>20.1 Postulates of the General Theory of Relativity</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>20.2 Gravitational Field in General Theory of Relativity</td>
<td>453</td>
<td></td>
</tr>
</tbody>
</table>
Contents

References ... 457